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Abstract

Deep learning offers the potential to learn complex spatial patterns directly from neuroimaging data
without manual feature engineering. We present NeuroTrauma-Net, a 3D convolutional neural network
with spatial attention mechanisms for predicting six-month functional outcomes in traumatic brain injury
(TBI). The model processes multimodal MRI (T1-weighted, FLAIR, and diffusion-derived maps) through a
hierarchical architecture that identifies injury-relevant regions. Training on 1,247 patients from the
CENTER-TBI dataset with five-fold cross-validation achieved AUC 0.91 (95% CI 0.89-0.93),
outperforming both traditional machine learning (AUC 0.86) and existing deep learning approaches.
Attention maps highlighted clinically plausible regions including the corpus callosum, brainstem, and
periventricular white matter. External validation on 412 patients from independent centers confirmed
generalizability (AUC 0.89). NeuroTrauma-Net represents a significant advance in automated, end-to-end
TBI outcome prediction with interpretable spatial localization.
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1. Introduction

Traumatic brain injury is characterized by heterogeneous pathology distributed across the brain, making
comprehensive assessment from imaging challenging. Traditional machine learning approaches rely on
pre-defined regions and hand-crafted features, potentially missing subtle or distributed patterns. Deep learning
methods can learn hierarchical representations directly from imaging data, automatically identifying
prognostically relevant features.

Previous deep learning applications in TBI have been limited by small sample sizes, lack of external validation,
and poor interpretability. The 'black box' nature of neural networks poses particular challenges for clinical
adoption, where understanding model reasoning is essential for trust and appropriate use. Recent advances in
attention mechanisms provide opportunities for spatial interpretability without sacrificing predictive performance.

We present NeuroTrauma-Net, a 3D convolutional neural network incorporating spatial attention for end-to-end
outcome prediction from multimodal MRI. Our contributions include: (1) a novel architecture optimized for TBI
imaging, (2) large-scale training and external validation, (3) interpretable attention maps highlighting
injury-relevant regions, and (4) uncertainty quantification for clinical deployment.
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Figure 1. NeuroTrauma-Net architecture. Multimodal 3D MRI volumes are processed through hierarchical convolutional
layers with increasing receptive fields. A spatial attention module highlights injury-relevant regions before final prediction.

2. Methods

2.1 Data Sources

We utilized data from the CENTER-TBI study, a prospective observational study across 65 European centers.
Inclusion criteria were moderate-to-severe TBI (GCS <12), age =18 years, multimodal MRI within 21 days, and
six-month GOS-E assessment. The final cohort comprised 1,247 patients. We additionally obtained external
validation data from three independent centers (n=412) not participating in CENTER-TBI.

2.2 Image Preprocessing

All MRI data underwent standardized preprocessing: N4 bias correction, skull stripping using HD-BET, affine
registration to MNI152 space (1mm isotropic), and intensity normalization (z-score within brain mask). Input
channels comprised T1l-weighted, FLAIR, and three diffusion-derived maps (FA, MD, and b0). Final input
dimensions were 5 x 182 x 218 x 182 voxels.



2.3 Network Architecture

NeuroTrauma-Net employs a 3D residual encoder with four resolution stages (64, 128, 256, 512 channels).
Each stage contains two residual blocks with instance normalization and leaky ReLU activations.
Downsampling uses strided convolutions. A spatial attention module after the encoder computes voxel-wise
attention weights via 1x1x1 convolutions and softmax normalization. Global average pooling followed by two
fully-connected layers (512, 256 units) produces the final prediction. Dropout (p=0.5) and weight decay (1e-4)
provide regularization.

2.4 Training Procedure

Training used five-fold stratified cross-validation with 20% validation split per fold. We employed AdamW
optimizer (Ir=1e-4), cosine annealing schedule, and mixed precision training. Data augmentation included
random affine transforms (£10° rotation, £10% scaling), intensity perturbations, and random cropping. Training
continued for 100 epochs with early stopping (patience=15) based on validation AUC. Final models were
ensembles of fold-specific weights.
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Figure 2. Training dynamics showing loss (left) and accuracy (right) convergence over 100 epochs. The model achieves
stable performance by epoch 60 with minimal overfitting.

2.5 Uncertainty Quantification

We implemented Monte Carlo dropout for epistemic uncertainty estimation. At inference, 30 forward passes
with active dropout provide a distribution of predictions. Uncertainty is quantified as the standard deviation of
predicted probabilities. High uncertainty cases are flagged for additional clinical review.

3. Results

3.1 Patient Characteristics

The development cohort (n=1,247) had mean age 44.8 + 17.2 years (69% male). Median GCS was 8 (IQR
5-11). Favorable outcome (GOS-E =5) was achieved by 592 patients (47.5%). The external validation cohort
(n=412) showed similar demographics (mean age 46.1 + 18.4 years, 72% male, 49.0% favorable). MRI timing
averaged 7.2 days post-injury.

Dev AUC External AUC Sens. Spec. Parameters

Logistic Regression 0.79 0.76 0.72 0.71 48

XGBoost (features) 0.87 0.86 0.81 0.79 -




3D ResNet-18 0.85 0.82 0.78 0.76 33.2M

3D DenseNet-121 0.87 0.84 0.80 0.78 11.9M

NeuroTrauma-Net 0.91 0.89 0.86 0.84 24.7M

Table 1. Performance comparison across models. NeuroTrauma-Net achieves superior performance with interpretable
attention mechanisms.

3.2 Model Performance

NeuroTrauma-Net achieved AUC 0.91 (95% CI 0.89-0.93) on cross-validation and 0.89 (0.85-0.93) on external
validation, significantly outperforming baseline 3D networks (p<0.01). Sensitivity and specificity at the optimal
threshold were 0.86 and 0.84 respectively. Calibration was excellent (Brier score 0.14). The ensemble
approach reduced variance compared to single-fold models.
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Figure 3. Attention map visualization for a patient with unfavorable outcome. High-attention regions (red) concentrate in the
corpus callosum and periventricular white matter, consistent with diffuse axonal injury patterns.

3.3 Attention Map Interpretation

Attention maps consistently highlighted clinically relevant regions across patients. For unfavorable outcomes,
high attention concentrated in the corpus callosum (87% of cases), brainstem (72%), and periventricular white
matter (68%). Lesioned areas received elevated attention, but the model also identified normal-appearing white
matter regions with subtle microstructural abnormalities. Neuroradiologist review confirmed clinical plausibility in
94% of examined cases.

3.4 Uncertainty Analysis

Monte Carlo dropout uncertainty was inversely correlated with prediction accuracy. High-uncertainty predictions
(top 20%) had significantly lower accuracy (78% vs 91%, p<0.001). Cases flagged for uncertainty often had
atypical injury patterns or image quality issues, suggesting appropriate identification of challenging cases for
additional clinical review.

4. Discussion

NeuroTrauma-Net demonstrates that end-to-end deep learning can achieve state-of-the-art TBI outcome
prediction while providing interpretable spatial localization. The attention mechanism successfully identifies
clinically relevant injury regions without explicit supervision, validating that the model learns biologically
meaningful patterns rather than spurious correlations.



The performance improvement over feature-based machine learning (AUC 0.89 vs 0.86) suggests that deep
learning captures additional spatial information not encoded in regional summary statistics. The attention maps
provide a mechanism for clinical oversight and may highlight subtle injuries missed on routine interpretation.

Limitations include computational requirements for 3D processing, need for standardized preprocessing, and
uncertainty in attention map interpretation. Future work will explore multi-task learning for simultaneous lesion
segmentation and outcome prediction.

5. Conclusions

NeuroTrauma-Net achieves excellent TBI outcome prediction with spatial interpretability through attention
mechanisms. External validation confirms generalizability across centers. The combination of high performance
and clinical transparency positions this approach for prospective validation toward clinical decision support
implementation.
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